Transfer Learning across Feature-Rich Heterogeneous Feature Spaces via Feature-Space Remapping (FSR)

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image alignment via kernelized feature learning

Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...

متن کامل

Translated Learning: Transfer Learning across Different Feature Spaces

This paper investigates a new machine learning strategy called translated learning. Unlike many previous learning tasks, we focus on how to use labeled data from one feature space to enhance the classification of other entirely different learning spaces. For example, we might wish to use labeled text data to help learn a model for classifying image data, when the labeled images are difficult to...

متن کامل

Feature Spaces-based Transfer Learning

Transfer learning provides an approach to solve target tasks more quickly and effectively by using previouslyacquired knowledge learned from source tasks. Most of transfer learning approaches extract knowledge of source domain in the given feature space. The issue is that single perspective can‟t mine the relationship of source domain and target domain fully. To deal with this issue, this paper...

متن کامل

Proactive Transfer Learning for Heterogeneous Feature and Label Spaces

We propose a framework for learning new target tasks by leveraging existing heterogeneous knowledge sources. Unlike the traditional transfer learning, we do not require explicit relations between source and target tasks, and instead let the learner actively mine transferable knowledge from a source dataset. To this end, we develop (1) a transfer learning method for source datasets with heteroge...

متن کامل

Discriminative Factor Alignment across Heterogeneous Feature Space

Transfer learning as a new machine learning paradigm has gained increasing attention lately. In situations where the training data in a target domain are not sufficient to learn predictive models effectively, transfer learning leverages auxiliary source data from related domains for learning. While most of the existing works in this area are only focused on using the source data with the same r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Intelligent Systems and Technology

سال: 2015

ISSN: 2157-6904,2157-6912

DOI: 10.1145/2629528